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Abstract— Real-time and accurate prediction of charg-
ing pile energy demands in electric vehicle (EV) charging
networks contributes significantly to load shedding and
energy conservation. However, existing methods usually
suffer from either data privacy leakage problems or heavy
communication overheads. In this paper, we propose a nov-
el blockchain-based personalized federated deep learning
scheme, coined P3, for privacy-preserving energy demands
prediction in EV charging networks. Specifically, we first
design an accurate deep learning-based energy demands
prediction model for charging piles, by making use of the C-
NN, BiLSTM, and attention mechanism. Second, we develop
a blockchain-based hierarchical and personalized federated
learning framework with a consensus committee, allowing
charging piles to collectively establish a comprehensive
energy demands prediction model in a low-latency and
privacy-preserving way. Last, a CKKS cryptosystem based
secure communication protocol is crafted to guarantee the
confidentiality of model parameters while model training.
Extensive experiments on two real charging pile datasets
demonstrate the superiorities of the proposed P3 scheme in
accurately predicting real-time energy demands over state-
of-the-art schemes. Further, the P3 scheme can achieve
reasonably low computational costs, compared with other
homomorphic-based schemes, such as Paillier and BFV.

Index Terms— Electric vehicle (EV) charging networks,
energy demands prediction, privacy preservation, federat-
ed learning, blockchain, CKKS homomorphic encryption.

I. INTRODUCTION

RAPID advancements in electric vehicle (EV) technolo-
gies have facilitated the interest in establishing EV charg-

ing networks by either the governments or car manufacturers.
For instance, as of November 2020, the largest fast-charging
location was in California on the Tesla Supercharger network,
with 56 charging stalls (see Fig. 1 for examples of Tesla
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EV chargers deployment in New York, USA, and Shanghai,
P. R. China, respectively). EV charging networks are critical
infrastructures for recharging electric vehicles. At the same
time, a large number of electric vehicles themselves can also
serve as mobile energy storage devices, which can be charged
during the trough period of grid electricity consumption to
reserve electricity and reversely transmit power to the grid
during peak electricity consumption periods to achieve load
shedding, thereby improving grid stability and reducing power
generation costs [1]. One big challenge for EV charging
networks is that during peak hours (say on weekends or
public holidays), an extensive number of EVs may request for
concurrent charging services, which inevitably causes energy
transfer congestion problems [2]. In addition, power grids may
also suffer from high disturbances if load demands change
abruptly.

In this regard, a line of energy demands prediction schemes
have been presented in recent years [3]–[6]. For example,
in 2018, Fukushima et al. [3] developed a recommendation
system by predicting the mileage of multiple electric vehicles
on highways. In 2019, Mao et al. [4] proposed a model for
predicting the dispatchable capacity of electric vehicles based
on the parallel gradient boosting decision tree algorithm and
multi-time-scale big data analysis. In 2021, Rob Shipman et al.
[6] developed a time series prediction neural network capable
of predicting the aggregated available capacity of EVs in the
next 24 hours. However, since energy charging data is privacy-
sensitive information, which may leak customers’ traveling
routes, home and office addresses, payment information, in-
dividual preferences, etc. [7], most existing energy demands
prediction schemes fail to consider the privacy preservation
issues. Further, many of these schemes perform energy de-
mands prediction in a centralized way, usually leading to heavy
communication and computational overheads, and delayed

(a) New York, USA (b) Shanghai, P.R. China

Fig. 1. Deployment of Tesla EV chargers in New York and Shanghai.
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energy prediction results.
To address these problems, we are motivated to propose

a privacy-preserving real-time energy demands prediction
scheme, coined P 3, for EV charging networks. Specifically,
we develop a blockchain-based federated learning framework,
where charging piles can jointly establish an energy demands
prediction scheme with no need to share their local energy
consumption data. In addition, since it has been proved that
model parameters or gradients may leak key information of
the original data [8], we also craft a CKKS-based secure
communication protocol to protect the model parameters while
model training. Further, we design an accurate energy de-
mands prediction model for energy charging piles in each
cluster, by making use of convolutional neural network (CNN),
bidirectional long short-term memory (BiLSTM), and the
attention mechanism. The main contributions of our work are
summarized as follows:

1) First, we design a deep learning based energy demands
prediction model for EV charging networks, by making
use of the CNN, BiLSTM, and attention mechanism,
which can achieve accurate prediction of future electric-
ity consumption at each charging pile.

2) Second, we develop a blockchain-based hierarchical
and personalized federated learning framework, which
allows charging piles to collectively establish a global
energy demands prediction model and then create a
personalized model for each cluster in a low-latency and
privacy-preserving way.

3) Third, we craft a CKKS cryptosystem based secure
communication protocol, which can not only guarantee
the confidentiality of model parameters while model
training, but also ensure the legitimate identities of
charging piles in participating federated learning.

The remaining of this paper is organized as follows: Section
II summarizes the related works. Section III introduces our
system model and threat model. In Section IV, we elaborate
on the proposed P 3 scheme. Then, in Section V, extensive
experiments are conducted to evaluate the performance of our
scheme. Last, we draw our conclusions in Section VI.

II. RELATED WORK

In this section, we briefly review the state-of-the-art research
works focusing on energy demands prediction, privacy preser-
vation, and federated learning in EV-relevant systems.

A. Energy Demands Prediction
To facilitate efficient energy management and support load

shedding, a growing interest in energy demands prediction in
EV-relevant systems has been shown in recent years. In 2018,
Fukushima et al. [3] developed a recommendation system
based on the prediction of the mileage of multiple electric
vehicles on highways, and applied the learning method based
on multiple regression to improve the prediction accuracy
of EVs energy consumption. In 2019, Saputra et al. [2]
further proposed an energy demand learning method based
on deep learning and federal learning to improve the accuracy
of energy demand prediction and reduce the communication

overhead of electric vehicle network. In 2019, Mao et al.
[4] proposed a model for predicting the dispatchable capacity
of electric vehicles based on the parallel gradient boosting
decision tree algorithm and multi-time-scale big data analysis.
In 2020, Yang et al. [5] pointed out that prediction models
must take into account not only conventional behaviors but
also short-term uncertainties. In 2021, Rob Shipman et al.
[6] developed a time series prediction neural network capable
of predicting the aggregate available capacity of EVs in the
next 24 hours and demonstrated its enhanced predictive power
on regression models trained by automatic machine learning.
In the same year, Álvarez et al. [9] proposed a method for
probabilistic load forecasting based on the adaptive online
learning of hidden Markov models, which recursively updates
model parameters and uses the latest parameters to obtain
probabilistic forecasts.

B. Privacy Preservation
The privacy preservation issues of EV-generated data (say

energy charging data, vehicle location data, etc.) have drawn
extensive attention over the years. In 2016, Li et al. [10]
proposed a privacy-preserving and fast authentication protocol,
called Portunes+, for charging pads to authenticate an EV’s
identity. In 2018, Li et al. [11] proposed a new spatial
decomposition algorithm by combining the random sampling
algorithm with the quadtree algorithm, adding noise satisfying
the differential privacy into the spatial segmentation algorithm
to ensure the security of single location data. In the same
year, Knirsch et al. [12] presented a reliable, automated,
and privacy-preserving selection of charging stations based
on pricing and the distance to the electric vehicle. Also in
2018, Gao et al. [13] proposed a blockchain-based privacy-
preserving payment mechanism for vehicle-to-grid (V2G) net-
works, which enables data sharing while securing sensitive
user information. In 2020, Feng et al. [14] introduced a novel
framework called blockchain-assisted privacy-preserving au-
thentication system (BPAS), which can provide authentication
automatically in vehicular ad hoc networks (VANETs) and
preserves vehicle privacy at the same time. In 2021, Baza et
al. [15], leveraging blockchain technology, proposed a privacy-
preserving charging-station-to-vehicle (CS2V) energy trading
scheme as well as a vehicle-to-vehicle (V2V) energy trading
scheme. The proposed schemes are useful in crowded cities
where there is a need for charging many EVs daily.

C. Federated Learning
Federated learning has been a promising distributed learning

paradigm in recent years. In 2019, Saputra et al. [2] proposed
an energy demand learning (EDL)-based prediction solution
with federated learning, in which a charging station provider
gathers information from all charging stations and then per-
forms the EDL algorithm to predict the energy demand for the
considered area without revealing real datasets. In 2020, Lu et
al. [16] proposed a federated learning based secure and intelli-
gent mechanism and designed a two-phase mitigating scheme
consisting of intelligent data transformation and collaborative
data leakage detection in vehicular cyber-physical systems. In
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the same year, Du et al. [17] conducted a brief survey of
existing studies on federated learning and its use in wireless
Internet of Things (IoT). Then, they discussed the significance
and technical challenges of applying federated learning in
vehicular IoT, and pointed out future research directions.
Also in 2020, Pokhrel et al. [18] proposed a communication
efficient and privacy-preserving federated learning framework
for enhancing the performance of Internet of Vehicles (IoV). In
2021, Huang et al. [19] proposed FedParking, which enables
parking lot operators to jointly train long-short term memory
(LSTM) models for parking space estimation based on fed-
erated learning. In the same year, Chai et al. [20] proposed
a hierarchical blockchain framework and a federated learning
algorithm for knowledge sharing among smart vehicles. Chen
et al. [21] proposed a Byzantine-fault-tolerance decentralized
federated learning method for autonomous vehicles, using a
publicly verifiable secret sharing scheme to protect federated
learning models. Also in 2021, Kong et al. [22] proposed
an efficient, flexible, and privacy-preserving model aggre-
gation scheme under a federated learning-based navigation
framework (named FedLoc), which achieves flexibility and
robustness and supports the dynamic joining and leaving of
participants.

III. SYSTEM MODEL AND THREAT MODEL

In this section, we introduce the system model and threat
model considered in this work.

A. System Model
The system model considered in this paper is shown in

Fig. 2. It mainly consists of three types of entities, namely
the trusted authority (TA), charging piles, and fog nodes.

1) Trusted authority: In order to realize secure communi-
cations, the trusted authority generates the public and
private keys required for encryption and decryption
based on the CKKS cryptosystem, and distributes them
to the charging piles and fog nodes.

2) Charging pile: Each charging pile, supplying energy to
electric vehicles, trains a local energy demands predic-
tion model with its own charging records. In each round
of federated learning, charing piles encrypt their local
model parameters and transfer them to the corresponding
fog nodes. After fog nodes update the global model,
the charing piles receive the global updates and further
adjust their own energy demands prediction models.

3) Fog node: As the agents of each charging pile cluster,
fog nodes are responsible for aggregating the local
model parameters of charging piles in their own clus-
ters. More importantly, they also take charge of further
aggregating and updating the global model parameters
to the blockchain, and then distribute these parameters
to charging piles.

B. Threat Model
In this work, TA is considered a fully trusted party that

bootstraps the entire system and distributes the keys to all

Fig. 2. The system model under consideration.

participants. Fog nodes are considered semi-trusted, which
means they are honest in model training but are curious about
the energy charging data as well as the model parameters
at each charging pile. Charging piles are considered trusted
parties that honestly collect and report energy charging data
to fog nodes.

In addition, this work also considers other types of cyber
threats, including malicious eavesdropping or interception
over communication links for energy charging data or model
parameters. Since energy charging data contains users’ private
information, it cannot be shared with any third party without
legal authorization. Model parameters may be used to infer the
partial distribution patterns of original training data, and the
confidentiality of model parameters should also be guaranteed.
As we see, the proposed scheme should achieve confidentiality
of not only the energy charging data but also the model
parameters while transmission.

IV. THE PROPOSED P 3 SCHEME

In this section, we elaborate on the proposed P 3 scheme, in-
cluding the overall workflow, CNN-BiLSTM-Attention-based
energy demands prediction, blockchain-based hierarchical and
personalized federated learning framework, and secure com-
munication protocol based on CKKS.

A. The Overall Workflow

The main goal of the proposed scheme is to allow multiple
charging piles to jointly build an effective energy demands
prediction model in a privacy-preserving way. The complete
workflow can be divided into the following six phases.

1) System Initialization: The TA generates public key
pk = (b, a) and secret key sk = (1, s) by executing
KeyGenerate(), to establish a secure channel between charg-
ing piles. Each charging pile participating in federated learning
needs to register at the TA. All NC charging piles are divided
into K clusters {J1, J2, . . . , JK} according to their geograph-
ical locations. Thus the cluster Jk consists of charging piles{
C(k,1), C(k,2), . . . , C(k,Nk)

}
. The fog nodes agree on the

initial parameters W0 of the energy prediction model and other
relevant parameters (i.e., the learning rate η, batch size B, the
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total number of communication rounds L, and the loss function
F ) as the common training goal of NC charging piles, and then
distribute the initial global model to each charging pile.

2) Local Model Training: The charging pile C(k,i) performs
model training with local data D(k,i) to obtain local model
update W l

(k,i) and uses ParaEncrypt() to encrypt model
parameters. The final generated local model update message
contains the local model update ciphertext E

(
W l

(k,i)

)
, times-

tamp Ts, and sample size n(k,i).
3) Model Parameters Aggregation: Each charging pile sends

the local model update ciphertext to the corresponding fog
node, and the fog node aggregates them one by one.

4) Cluster Model Uploading: Fog nodes upload the aggre-
gated local model update ciphertexts to the blockchain, and a
consensus committee is responsible for verifying the updates
and executing the Practical Byzantine Fault-tolerance (PBFT)
consensus algorithm [14] to generate new blocks.

5) Global Model Updating: The consensus committee per-
forms the aggregation process to generate a new global model
update block based on the verified updates in the blockchain,
and distributes it back to the charging piles via the fog nodes.

6) Model Personalization: Repeat phases 2) to 5) until the
global model updating converges to a steady model or meets a
termination requirement. Then, the fog nodes personalize the
local energy demands prediction model in their own clusters.

B. CNN-BiLSTM-Attention-Based Energy Demands
Prediction Model

In this work, the CNN-BiLSTM algorithm with an attention
mechanism is exploited to train the energy demands prediction
model. The one-dimensional convolutional layer of CNN can
extract effective features from the input data. The classical
LSTM makes the weight of self-loop variable by adding the
input gate, forget gate, and output gate. When the model
parameters are fixed, the integral scale at different times
can be dynamically changed, thus avoiding the problem of
gradient disappearance or expansion. The LSTM model can
be expressed as follows:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft · Ct−1 + it · C̃t
ot = σ(Wo[ht−1, xt] + bo)

ht = ot · tanh(Ct).

(1)

In BiLSTM, we get the hidden state
−→
ht of the forward

LSTM and the hidden state
←−
ht of the reverse LSTM, then

the hidden state of the BiLSTM at time t is given by

ht =
−→
ht ⊕

←−
ht . (2)

The attention weights and the corresponding hidden layer
states are weighted and summed to obtain the final attention
weights, which is given by

at =

m∑
t=1

softmax(tanh(ht)) · ht. (3)

Suppose that the global model needs to undergo L updates,
and the local model of charging pile is iterated T times in each
update. Each charging pile C(k,i) locally trains the proposed
energy demands prediction model on their own data D(k,i). In
the l-th round, each charging pile C(k,i) first uses the given
updated model parameter to update its model parameter W l

(k,i)

and retrains the model based on the Adam optimizer. v1 and
v2 represent the exponential moving average of W l

(k,i) and

(W l
(k,i))

2, respectively. ρ1 and ρ2 are the exponential decay
rate of v1 and v2, which are used to control the updating speed
of the model. The updating rules include:{

v1 = ρ1v1 + (1− ρ1)W l
(k,i)

v2 = ρ2v2 + (1− ρ2)(W l
(k,i))

2
.

(4)

Then, calculate the bias-corrected v1 and v2:

v1 =
v1

1− ρτ1
, v2 =

v2
1− ρτ2

, (5)

where τ is the time step. C(k,i) updates the model locally by

W l
(k,i) =W l

(k,i) − η
v1√
v2 + θ

, (6)

where θ is a small constant used to stabilize the value.

C. Blockchain-Based Hierarchical and Personalized
Federated Learning Framework

In this work, we design a blockchain-based hierarchical and
personalized federated learning framework (see Algorithm 1),
where a consensus committee is established to replace the
central server in the traditional federated learning architectures
to collaborate on global model update aggregation and veri-
fication. The framework can significantly enhance scalability,
security, and robustness. In addition, each cluster has its own
personalized model, which improves the accuracy of energy
demands prediction.

Since the energy consumption data at charging piles are
strongly correlated with their positions and nearby customers,
the global model obtained by traditional federated learning
cannot well adapt to each charging pile, leading to reduced
accuracy of energy demands prediction. To solve this prob-
lem, we divide the charging piles into multiple clusters and
employ both inter-cluster and inner-cluster federated learning.
The inter-cluster federated learning trains a global model as
the base layer, and inner-cluster federated learning trains a
personalization layer for each cluster (see Fig. 3). For the
charging pile clustering algorithm, we utilize the K-means
algorithm, where the log data of charging piles contain their
location information expressed in latitude and longitude.

In this framework, each cluster is assigned a fog node as an
agent, we use the alliance chain and require only TA-certified
fog nodes to join the blockchain. The consensus committee F ,
composed of all fog nodes, makes use of the PBFT consensus
mechanism [14]. At the beginning of federated learning, they
jointly agree on the basic parameters of the initial model W0

and the relevant parameters of the training, and then store them
in block 0 of the blockchain. Later, the blockchain stores both
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Fig. 3. The diagram of hierarchical and personalized federated learning.

cluster model update blocks and global model update blocks.
The cluster model update block contains: block headers, cur-
rent round number l, cluster number k, cluster model update
ciphertext Mk (which is aggregated from local model update
ciphertext), each sample size

{
n(k,1), n(k,2), . . . , n(k,Nk)

}
, and

timestamp
{
Ts(k,1), Ts(k,2), . . . , Ts(k,Nk)

}
. The global model

update block contains: block headers, current round number l,
and global model update ciphertext M . The fog nodes store
the entire list of blockchains, and historical blocks in the
blockchain can be used to revert to previous states in the event
of an error.

Algorithm 1: Hierarchical and Personalized Federated Learning

1 Initialization: Initialize W0 ;
2 for round l = 1, 2, . . . do
3 (I). For charging piles:
4 if l > 1 then
5 a). Receive WGl−1B and W l−1

kP from fog node;
6 b). Set the model parameters by

W l
(k,i) ←

(
WGl−1B ,W l−1

kP

)
;

7 end
8 repeat local training
9 for each batch of data resource do

10 Compute the gradient W l
(k,i);

11 Use Adam Optimizer to update the model
parameters:W l

(k,i) ←W l
(k,i) − η

ν1√
ν2+θ

;
12 end
13 until the loss function f converges;
14 Send W l

(k,i) to the fog node;
15 (II). For fog nodes:
16 a). Receive W l

(k,i) from each charging pile
C(k,i), i ∈ {1, . . . , Nk};

17 b). Aggregate W l
k =

(
W l
kB ,W

l
kP

)
←(∑Nk

i=1 α(k,i)W
l
B(k,i),

∑Nk

i=1 α(k,i)W
l
P (k,i)

)
;

18 c). Upload W l
kB to the blockchain;

19 if there are K global update blocks on the
blockchain then

20 Aggregate

WGlB ←
∑K
k=1

(∑Nk

i=1 α(k,i)W
l
B(k,i)

)
;

21 Send WGlB ,W l
kP to each charging pile C(k,i);

22 end
23 end

In classical federated learning, the goal is to minimize the
objective function:

F =

NC∑
i=1

ni
Ns

f(WG), (7)

where Ns is the total number of samples across all piles, f is
the loss function on charging piles, and WG is global model
parameters. In our proposed p3 scheme, the goal is to minimize
the objective function:

F =

NC∑
i=1

ni
Ns

f(Wk), (8)

where Wk is the personalization model for each cluster. Specif-
ically, in the l-th round, each charging pile C(k,i) first updates
its own model parameter W l

(k,i) according to the global base
layer parameter WGl−1B and the cluster personalization layer
parameter W l−1

kP received from the fog node. It then retrains
the model and sends the resulting local parameters W l

(k,i) ={
W l
B(k,i),W

l
P (k,i)

}
to the fog node, where W l

B(k,i) is the
weight of the base layer and W l

P (k,i) is the weight of the
personalization layer. In our model, the attention layer is
used as the personalization layer, and the remaining layers
are used as the base layer. Charging pile C(k,i) only uploads
the encrypted model parameter updates, while the original
data is stored locally. The fog node aggregates the local
model updates of each charging pile from Jk according to
the following formula:

W l
k =

{
W l
kB ,W

l
kP

}
=

{
Nk∑
i=1

α(k,i)W
l
B(k,i),

Nk∑
i=1

α(k,i)W
l
P (k,i)

}
,

(9)

where the contribution rate α(k,i) is the proportion of training
data D(k,i) to the total number of training samples. Then,
the fog node obtains the information of Nk charging piles{
W l
k, Ts(k,1), . . . , Ts(k,Nk), n(k,1), . . . , n(k,Nk)

}
and upload it

to the blockchain. After completing the aggregation task,
fog node Fi uses this information as transaction b. It then
broadcasts b and < propose, v, u, d > within the committee,
where v is the view number corresponding to Fi, u is the
unique number of b, and d is the hash digest of b. It should
be noted that for the weight part, fog nodes only upload the
aggregated base layer W l

kB instead of the entire weight W l
k.

Other committee members broadcast < prepare, v, u, d, i >
after receiving and verifying the information broadcast by
other fog nodes, where i is the serial number of these members
themselves. When other members receive 2f + 1 broadcasts,
they further broadcast < commit, v, u, d, i > and commit b
to slot. These updates that pass validation will be packaged
onto the blockchain as a cluster model update block. When
the number of cluster model update blocks in round l is equal
to K, the committee will conduct a secondary aggregation
of all cluster model updates in this round to generate a
new global model update block, the principle is the same as
above. Specifically, we randomly select a committee member
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as the leader FL to be responsible for secondary aggregation.
When secondary aggregation is to be performed, a member
Fi will start a timer T , and if the global model update
block has not been generated after the timeout, the leader
is considered to be faulty and re-selected. The global model
parameter WGlB =

∑K
k=1

(∑Nk

i=1 α(k,i)W
l
B(k,i)

)
. Then the

fog nodes distribute WGlB and W l
kP to each charging pile,

start l+1 round of training, and repeat the above steps. When∣∣WGlB −WGl−1B

∣∣ ≤ ε, where ε is any positive number, that
is to say, the global gradient converges, or when a certain
number of iterations is reached, the model training stops.

The traceable, tamper-proof nature of the blockchain makes
it more resistant to malicious attacks and blocks on the chain
can be publicly verified thus can mitigate the impact of poison
attacks. In addition, model update information is always stored
in ciphertext on the chain, further ensuring that it is not
exposed to unauthorized, untrusted devices.

D. CKKS-Based Secure Communication Protocol

In this part, a secure communication protocol based on
CKKS is crafted to protect parameters in the federated learn-
ing process [23]. The CKKS scheme achieves homomorphic
encryption on approximate numbers, which makes the scheme
extremely efficient. Compared with the traditional Paillier [24]
and BFV [25], CKKS has a faster operation speed, which is
very beneficial for improving the training efficiency [26].

CKKS is based on hardness assumptions of Ring Learning
with Errors (RLWE). Given a ring R = Z[X]/

(
XN + 1

)
in

which N is a power of two. We define Rq = R/qR for the
residue ring of R modulo an integer q. RLWE assumption is
that, given polynomials of the form (a, b = s · a + e) ∈ R2

q ,
the term b is computationally indistinguishable from uniformly
random elements of Rq when a is chosen uniformly at random
from Rq , s is chosen from the error distribution over R,
e is drawn from the error distribution over R. For a real
σ > 0, DG

(
σ2
)

samples a vector in ZN , whose coecient are
drawn independently from the discrete Gaussian distribution
of variance σ2. HWT (h) is the set of signed binary vectors
in {0,±1}N with Hamming weight h.

The secure communication protocol consists of the follow-
ing four functions:

1) KeyGenerate(): Given the security parameter λ, TA first
samples s← HWT (h), a← R and e← DG

(
σ2
)
, and then

sets the secret key as sk ←− (1, s), and the corresponding
public key pk ← (b, a) ∈ R where b ← −as + e(modN).
After that, TA distributes the key pairs to each charging pile
C(k,i).

2) ParaEncrypt(): Upon sampling v(k,i) ← R and
e0(k,i), e

1
(k,i) ← DG

(
σ2
)
, the charging pile C(k,i) encrypts its

local model parameter W l
(k,i) with pk as

E(W l
(k,i)) = v(k,i) · pk +

(
W l

(k,i) + e0(k,i), e
1
(k,1)

)
mod N

=
(
c0(k,i), c

1
(k,i)

)
.

(10)

3) ParaAggregate(): After receiving contribution ratios{
α(k,1), α(k,2), · · · , α(k,Nk)

}
of all charging piles in clus-

ter, the fog node will aggregate the ciphertext in-
formation of Nk charging piles. The ciphertext part
E(W l

(k,1)), E(W l
(k,2)), · · · , E(W l

(k,Nk)
) is aggregated as fol-

lows:

Mk =

Nk∑
i=1

(
α(k,i) · E(W l

(k,i))
)

=

(
Nk∑
i=1

(α(k,i) · c0(k,i)),
Nk∑
i=1

(α(k,i) · c1(k,i))

)
mod N

=
(
c0k, c

1
k

)
,

(11)

where

c0k =

Nk∑
i=1

[
α(k,i) ·W l

(k,i) + α(k,i) ·
(
e0(k,i) + v(k,i) · b

)]
,

c1k =

Nk∑
i=1

[
α(k,i) ·

(
e1(k,i) + v(k,i) · a

)]
.

(12)

Assume that the sample size of each charging pile n ={
n(k,1), n(k,2)..., n(k,Nk)

}
. After the aggregation is complete,

the fog node Jk sends {Mk, T
′
s, n} to the blockchain. The

committee verifies it and aggregates the data from each fog
node for the second time in the same principle, i.e., M =
(c0, c1). Then the local model update ciphertext of all NC
charging piles is obtained and stored in the global model
update block of the blockchain.

4) ParaDecrypt(): After downloading the global model up-
date ciphertext M from the blockchain, each fog node dis-
tributes M to the charging pile inside the cluster. The charging
pile C(k,i) decrypts the ciphertext using its sk:

D(M) =M · sk = c0 + c1 · s mod N

=

K∑
k=1

Nk∑
i=1

(
α(k,i) ·W l

B(k,i)

)
.

(13)

Thus, we obtain global parameters aggregated from NC
charging piles. Finally, according to the update, each charging
pile locally calculates a new global model and start the next
round of training. In the whole process, the information of
parameters is transmitted in the form of ciphertext on the
communication link, ensuring the attacker cannot obtain useful
information when eavesdropping on the communication link.

V. SIMULATION AND ANALYSIS

In this section, we conduct extensive experiments to evaluate
the performance of our proposed scheme. First, we give the
experiment settings. Then, we compare the accuracy of the
energy demands prediction model with state-of-art studies,
including Saputra et al. [2] and Tun et al. [27], and compare
the computational costs of the secure communication protocol
with typical Paillier [24] and BFV [25] based ones.
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A. Experiment Settings

The experiments are conducted on a laptop computer with
an Intel Core i5-7400@3.00GHz processor and 8GB memory.
The operating system is 64-bit Windows 10. The CNN-
BiLSTM-Attention-based energy demands prediction model is
realized by Keras1.

The two datasets used are the real-world dataset named
Electric Vehicle Charging Sessions Dundee2 and ACN [28].
Dundee dataset includes 67,112 pieces of data from 67 charg-
ing piles in Dundee, UK from 2017 to 2018, and each con-
sumption is recorded as one piece of data, including charging
pile ID, charging pile location, charging date, charging start
and end time, energy consumption, transaction ID, charging
method, and other information. The first five types of data are
selected as the characteristics of the model training, and the
energy consumption is used as the label for training. ACN
dataset includes 66,748 pieces of data from 114 charging
piles in California from 2018 to 2021. The selection of
characteristics is the same as in Dundee.

In the data preprocessing stage, we first split each charging
record into its energy consumption in each hour period and
delete the data whose energy field value is less than or equal
to 0. Subsequently, 1% outliers were removed by DBSCAN
clustering. Then we replace the original specific date and
time with months (1, 2, ..., 12), days (1, 2, ..., 31), days of the
week (1, 2, ..., 7) and hours (0, 1, ..., 23). The character string
is encoded and all features are normalized. In the pile level
prediction aspect, the output of the model is a prediction of
a piece of electricity consumption data of a charging pile in
the next hour. In the cluster level prediction aspect, output
the total electricity consumption in the cluster in the next 24
hours.

B. Performance Comparison on Accuracy of Energy
Demands Prediction Models

In this subsection, we first take the Dundee dataset as an
example to show the clustering results under various K values
(see Fig. 4). In the subsequent experiments, we set K = 3
unless otherwise specified. Then, we show the numerical re-
sults about the performance of the energy demands prediction
models in two aspects, namely pile level and cluster level.
Table I exhibits the energy demands prediction performance
of the Dundee dataset and the ACN dataset in terms of the
mean absolute error (MAE), root mean square error (RMSE),
and symmetric mean absolute percentage error (SMAPE). It
can be easily seen that, the proposed energy prediction model
outperforms other models on most metrics at pile level, while
it outperforms other models on all metrics at cluster level. On
Dundee dataset, we can obtain an MAE, RMSE and SMAPE
of 0.69, 1.27, and 39.95%, respectively, when aspect is pile,
and 64.64, 78.36 and 16.53% when aspect is cluster. While on
ACN dataset, we can obtain an MAE, RMSE and SMAPE of
0.61, 1.42 and 33.90% when aspect is pile, and 77.09, 100.81
and 44.69% when aspect is cluster.

1https://keras.io/
2https://data.dundeecity.gov.uk/dataset/ev-charging-data

(a) K = 2 (b) K = 3 (c) K = 4

Fig. 4. The clustering results of charging piles under various K values.

TABLE I
NUMERICAL RESULTS OF THE ENERGY DEMANDS PREDICTION MODEL

OF DIFFERENT CLUSTERS IN TWO DATA SETS AND TWO PREDICTION

ASPECTS

Dataset Aspect Cluster
Saputra et al. [2] Tun et al. [27] The proposed P 3

MAE RMSE SMAPE MAE RMSE SMAPE MAE RMSE SMAPE

Dundee

Pile

level

1 0.89 1.37 42.92% 0.90 1.39 40.44% 0.90 1.38 38.57%

2 0.59 1.22 54.37% 0.59 1.32 47.83% 0.57 1.27 43.20%

3 0.73 1.17 38.51% 0.74 1.18 38.05% 0.73 1.16 33.74%

Avg 0.70 1.25 48.00% 0.70 1.30 43.82% 0.69 1.27 39.95%

Cluster

level

1 63.66 75.95 17.72% 66.61 75.05 18.56% 60.41 71.65 16.86%

2 67.88 84.92 19.23% 60.37 80.68 17.11% 56.73 75.25 16.19%

3 81.32 95.74 17.52% 77.12 94.56 16.60% 76.84 88.20 16.55%

Avg 70.94 85.53 18.16% 68.01 83.42 17.40% 64.64 78.36 16.53%

ACN

Pile

level

1 0.72 1.33 47.01% 0.67 1.30 38.71% 0.66 1.32 38.42%

2 0.79 1.60 40.16% 0.59 1.49 31.73% 0.58 1.51 30.75%

3 0.58 1.07 27.99% 0.57 1.03 25.60% 0.56 1.06 25.12%

Avg 0.76 1.47 42.79% 0.62 1.40 34.57% 0.61 1.42 33.90%

Cluster

level

1 93.98 120.56 43.19% 86.20 109.56 38.57% 84.04 106.52 35.47%

2 195.63 229.96 68.68% 180.74 212.32 65.23% 148.03 178.34 46.66%

3 14.05 18.67 60.51% 14.21 18.06 60.03% 13.76 17.58 56.37%

Avg 109.43 133.17 56.53% 101.16 122.47 53.36% 77.09 100.81 44.69%

Figure 5 presents the result of SMAPE of all considered en-
ergy demands prediction models with varying communication
rounds on different dataset. It is clear that as the number of
communication rounds increases, the error of our model can
decrease relatively quickly and the model gradually converges.
In the end, it has generally the best performance over others.

In addition to the above experiments, we also carry out
experiments to evaluate the performance of each locally built
energy demands prediction model using limited data resources
as well as the performance of the model built by traditional
FedAvg. Figure 6 and Fig. 7 visually show the numerical
results of all three metrics under the abovementioned local,
FedAvg, and the proposed energy demands prediction models,
taking the ACN dataset as an example. We can see that all local
energy demands prediction models perform unsatisfactorily
compared with the FedAvg model, while the performance of
the models involved in P 3 is further optimized.

C. Performance Comparison on Communication
Overheads of Federated Learning Framework

In this subsection, we compare the communication overhead
between blockchain-based hierarchical personalized federated
learning framework and traditional federated learning frame-
works [2], [27]. Suppose a total of 114 charging piles are
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Fig. 5. Comparison of SMAPE of different models at the cluster level in ACN and Dundee datasets.
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Fig. 6. Performance comparison of the local, FedAvg, and the proposed energy prediction models at the pile level on ACN dataset.
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Fig. 7. Performance comparison of the local, FedAvg, and the proposed energy prediction models at the cluster level on ACN dataset.

divided into 3 clusters. The CNN-BiLSTM-Attention model
has a total of 66, 627 parameters and the precision is 32 bits,
so the local update size of each charging pile is 66627 ×
32/

(
8× 106

)
≈ 0.267MB. Figure 8 shows the compari-

son of the specific communication overhead per round. The
blockchain-based hierarchical federated learning framework
replaces the central server with fog nodes, which makes the
load no longer excessively concentrated on the central server
and makes the network architecture have better scalability.
The communication overhead of the charging pile remains
unchanged, and the fog node reduces the communication
overhead by 64.1% compared with the central server.

D. Performance Comparison on Computational Costs of
Secure Communication Protocols

In the proposed P 3 scheme, we use the CKKS cryptosystem
to encrypt the model parameters. In this subsection, we analyze
the computational costs in terms of the message encryption,
decryption, and addition in P 3 scheme, compared with other
homomorphic encryption based schemes, such as Paillier [24]
and BFV [25]. Batch encryption is used for each homomorphic
encryption scheme to optimize the computational speed in
simulation experiments. The calculation cost of ciphertext
operation with different size model parameters is shown in
Table II. As we can see, the computation time of encryption
operation increases linearly with the number of parameters
of the model. For encryption and decryption operations, the
computational costs of our P 3 scheme are significantly lower
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Fig. 8. Comparison of communication overheads per round.

TABLE II
COMPUTATIONAL COSTS OF PAILLIER, BFV AND CKKS

Number of Model Parameters
Operation HE Method

10000 20000 40000
Paillier 1.21 2.32 4.53
BFV 0.61 0.82 1.31Encryption Time (s)

CKKS 0.02 0.03 0.07
Paillier 0.72 1.32 2.53
BFV 0.61 0.82 1.32Decryption Time (s)

CKKS 0.01 0.02 0.04
Paillier 0.05 0.10 0.19
BFV 0.02 0.03 0.05Addition Time (s)

CKKS 0.04 0.08 0.13

than the other schemes. Even if the P 3 scheme is slightly
slower than the BFV scheme in ciphertext addition, this
deficiency is reasonably acceptable, thanks to its superior
encryption and decryption speed.

VI. CONCLUSION

In this paper, we have proposed a blockchain-based feder-
ated deep learning scheme, named P 3, for privacy-preserving
energy demands prediction in EV charging networks. First, we
designed an energy demands prediction model based on CNN-
BiLSTM-Attention, which enables charging piles to predict
future electricity consumption accurately. In addition, we
developed a novel blockchain-based hierarchical and personal-
ized federated learning framework with a consensus committee
to allow charging piles to collectively establish a compre-
hensive energy demands prediction model in a low-latency
and privacy-preserving way. Further, a secure communication
protocol based on the CKKS cryptosystem was crafted, which
can not only ensure the confidentiality of the model parameters
during model training, but also ensure that the charging pile is
a legitimate participant in federated learning. Extensive exper-
iments on two real-world EV charging datasets demonstrated
the effectiveness of the proposed P 3 scheme as well as the
superiorities over state-of-the-art schemes, in terms of the
prediction accuracy and computational costs.
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